Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making
Orsini CA, Hernandez CM, Singhal S, Kelly KB, Frazier CJ, Bizon JL, Setlow B
J Neurosci. 2017 Nov 29;37(48):11537-11548. doi: 10.1523/JNEUROSCI.2344-17.2017. Epub 2017 Oct 27
ラットにSmall & Safe rawardかLarge & Risky rewardかを選ばせる課題を用い、扁桃体BLAを光刺激で抑制したときに、光刺激のタイミングによって真逆の効果が見られることを報告しています。
Orsini CA, Hernandez CM, Singhal S, Kelly KB, Frazier CJ, Bizon JL, Setlow B
J Neurosci. 2017 Nov 29;37(48):11537-11548. doi: 10.1523/JNEUROSCI.2344-17.2017. Epub 2017 Oct 27
ラットにSmall & Safe rawardかLarge & Risky rewardかを選ばせる課題を用い、扁桃体BLAを光刺激で抑制したときに、光刺激のタイミングによって真逆の効果が見られることを報告しています。
Abstract
Decision making is a multifaceted process,
consisting of several distinct phases that likely require different
cognitive operations. Previous work showed that the basolateral amygdala
(BLA) is a critical substrate for decision making involving risk of
punishment; however, it is unclear how the BLA is recruited at different
stages of the decision process. To this end, the current study used
optogenetics to inhibit the BLA during specific task phases in a model
of risky decision making (risky decision-making task) in which rats
choose between a small, “safe” reward and a large reward accompanied by
varying probabilities of footshock punishment. Male Long–Evans rats
received intra-BLA microinjections of viral vectors carrying either
halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by
optic fiber implants and were trained in the risky decision-making task.
Laser delivery during the task occurred during intertrial interval,
deliberation, or reward outcome phases, the latter of which was further
divided into the three possible outcomes (small, safe; large,
unpunished; large, punished). Inhibition of the BLA selectively during
the deliberation phase decreased choice of the large, risky outcome
(decreased risky choice). In contrast, BLA inhibition selectively during
delivery of the large, punished outcome increased risky choice.
Inhibition had no effect during the other phases, nor did laser delivery
affect performance in control rats. Collectively, these data indicate
that the BLA can either inhibit or promote choice of risky options,
depending on the phase of the decision process in which it is active.
PDF | SLIDE
参考に、ここ数年の扁桃体関連論文リストです。
Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making
PDF | SLIDE
参考に、ここ数年の扁桃体関連論文リストです。
Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making
Caitlin A. Orsini, Caesar M. Hernandez,
Sarthak Singhal, Kyle B. Kelly, Charles J. Frazier, Jennifer L. Bizon and Barry
Setlow
J Neurosci. 2017 Nov 29;37(48):11537-11548.
1.
The central amygdala controls
learning in the lateral amygdala.
Kai Yu, Sandra Ahrens, Xian Zhang, Hillary
Schiff, Charu Ramakrishnan, Lief Fenno, Karl Deisseroth, Fei Zhao, Min-Hua Luo,
Ling Gong, Miao He, Pengcheng Zhou, Liam Paninski & Bo Li
Nat Neurosci. 2017 Dec;20(12):1680-1685.
2.
Motivational
neural circuits underlying reinforcement learning
Bruno B Averbeck & Vincent D Costa
Nat Neurosci. 2017 Mar 29;20(4):505-512.
3.
Posterior Orbitofrontal and
Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory
Systems with Opposite Functions
Basilis Zikopoulos, Malin Höistad, Yohan
John and Helen Barbas
J Neurosci. 2017 May 17;37(20):5051-5064.
4.
The Rhesus Monkey Connectome
Predicts Disrupted Functional Networks Resulting from Pharmacogenetic
Inactivation of the Amygdala
David S. Grayson, Eliza Bliss-Moreau,
Christopher J. Machado, Jeffrey Bennett, Kelly Shen, Kathleen A. Grant, Damien
A. Fair, David G. Amaral
Neuron. 2016 Jul 20;91(2):453-66.
5.
Central amygdala circuits
modulate food consumption through a positive-valence mechanism
Amelia M Douglass, Hakan Kucukdereli,
Marion Ponserre, Milica Markovic, Jan Gründemann, Cornelia Strobel, Pilar L
Alcala Morales, Karl-Klaus Conzelmann, Andreas Lüthi & Rüdiger Klein
Nat Neurosci. 2017 Oct;20(10):1384-1394.
6.
Manipulating fear associations
via optogenetic modulation of amygdala inputs to prefrontal cortex
Oded Klavir, Matthias Prigge, Ayelet Sarel,
Rony Paz & Ofer Yizhar
Nat Neurosci. 2017 Jun;20(6):836-844.
7.
Amygdala inputs to prefrontal
cortex guide behavior amid conflicting cues of reward and punishment
Anthony Burgos-Robles, Eyal Y Kimchi, Ehsan
M Izadmehr, Mary Jane Porzenheim, William A Ramos-Guasp, Edward H Nieh, Ada C
Felix-Ortiz, Praneeth Namburi, Christopher A Leppla, Kara N Presbrey, Kavitha K
Anandalingam, Pablo A Pagan-Rivera, Melodi Anahtar, Anna Beyeler & Kay M
Tye
Nat Neurosci. 2017 Jun;20(6):824-835.
8.
[Opinion] New perspectives on
the neurophysiology of primate amygdala emerging from the study of naturalistic
social behaviors
Katalin M. Gothard, Clayton P. Mosher,
Prisca E. Zimmerman, Philip T. Putnam, Jeremiah K. Morrow, Andrew J. Fuglevand
Wiley Interdiscip Rev Cogn Sci. 2017 Aug
11.
9.
Basolateral amygdala to
orbitofrontal cortex projections enable cue-triggered reward expectations
Nina T. Lichtenberg, Zachary T. Pennington,
Sandra M. Holley, Venuz Y. Greenfield, Carlos Cepeda, Michael S. Levine and
Kate M. Wassum
J Neurosci. 2017 Aug 30;37(35):8374-8384.
10. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque
Medial and Orbital Frontal Cortex during Learning
Peter H. Rudebeck, Joshua A. Ripple, Andrew
R. Mitz, Bruno B. Averbeck and Elisabeth A. Murray
J Neurosci. 2017 Feb 22;37(8):2186-2202.
11. Dopamine in the medial amygdala network mediates human bonding
Shir Atzil, Alexandra Touroutoglou, Tali
Rudy, Stephanie Salcedo, Ruth Feldman, Jacob M. Hooker, Bradford C. Dickerson,
Ciprian Catana, and Lisa Feldman Barrett
Proc Natl Acad Sci U S A. 2017 Feb
28;114(9):2361-2366.
12. Neural Basis for Economic Saving Strategies in Human
Amygdala-Prefrontal Reward Circuits
Leopold Zangemeister, Fabian Grabenhorst, Wolfram
Schultz
Curr Biol. 2016 Nov 21;26(22):3004-3013.
13. Bidirectional Control of Social Behavior by Activity within
Basolateral and Central Amygdala of Primates
Laurie L. Wellman, Patrick A. Forcelli,
Brittany L. Aguilar and Ludise Malkova
J Neurosci. 2016 Aug 17;36(33):8746-56.
14. A fast pathway for fear in human amygdala
Constantino Méndez-Bértolo, Stephan
Moratti, Rafael Toledano, Fernando Lopez-Sosa, Roberto Martínez-Alvarez, Yee H
Mah, Patrik Vuilleumier, Antonio Gil-Nagel & Bryan A Strange
Nat Neurosci. 2016 Aug;19(8):1041-9.
15. Neural mechanisms of social decision-making in the primate amygdala
Steve W. C. Chang, Nicholas A. Fagan, Koji
Toda, Amanda V. Utevsky, John M. Pearson, and Michael L. Platt
Proc Natl Acad Sci U S A. 2015 Dec
29;112(52):16012-7.
16. [Review] Ensemble coding in amygdala circuits for associative
learning
Jan Gründemann, Andreas Lüthi
Curr Opin Neurobiol. 2015 Dec;35:200-6.
17. Combinatorial Inputs to the Ventral Striatum from the Temporal
Cortex, Frontal Cortex, and Amygdala: implications for Segmenting the Striatum
Eun Young Choi, Song-Lin Ding and Suzanne
N. Haber
eNeuro 11 December 2017,
ENEURO.0392-17.2017;
No comments:
Post a Comment